
Improving I/O Throughput of Scientific
Applications using Transparent Parallel

Compression
Tekin Bicer

Computer Science and Engineering
Ohio State University

bicer@cse.ohio-state.edu

Jian Yin
Pacific Northwest National Laboratory

Richland, WA
jian.yin@pnnl.gov

Gagan Agrawal
Computer Science and Engineering

Ohio State University
agrawal@cse.ohio-state.edu

Abstract—Increasing number of cores in parallel computer
systems are allowing scientific simulations to be executed with
increasing spatial and temporal granularity. However, this also
implies that increasing larger-sized datasets need to be output,
stored, managed, and then visualized and/or analyzed using
a variety of methods. In examining the possibility of using
compression to accelerate all of these steps, we focus on two
important questions: “Can compression help save time when
data is output from, or input into, a parallel program?”, and
“How can a scientist’s effort in using compression with a parallel
program be minimized?”. We focus on PnetCDF, and show how
transparent compression can be supported, thus allowing an
existing simulation program to start outputting and storing data
in a compressed fashion, and similarly, allow a data analysis
application to read compressed data. We address challenges
in supporting compression when parallel writes are being per-
formed.

In our experiments, we first analyze the effects of using
compression with microbenchmarks, and then, continue our
evaluation using a scientific simulation application, and two
data analysis applications. While we obtain up to a factor
of 2 improvement in performance for microbenchmarks, the
execution time of simulation application is improved up to 22%,
and the maximum speedup of data analysis applications is 1.83
(with an average speedup of 1.36).

I. INTRODUCTION

Increasing number of cores in parallel computer systems are
allowing scientific simulations to be executed with increasing
spatial and temporal granularity, providing opportunities to
observe underlying phenomenon at scales that have never been
feasible in the past. However, such ‘big compute’ opportunities
are creating ‘big data’ problems. To understand scientific phe-
nomenon underlying these simulations, data from simulations
need to be output, stored, managed, and then visualized and/or
analyzed using a variety of methods.

Unfortunately, parallel systems are becoming increasingly
I/O bound. Thus, large datasets that are generated by parallel
applications create several problems:

1) The I/O and storage cost of large-scale snapshots or
checkpoints of data, which can slowdown the simulation,

2) the difficulty of managing, storing, and moving the
massive-scale data after it is generated, and

3) the challenge of reading such large-scale data from an
I/O system for analysis, and analyzing data at such scale.

Consider, as just one example, the climate simulations.
It is well documented that I/O can limit the scalability of
simulations beyond a certain number of cores [21]. It has also
been reported that an existing simulation program sustained
2 TB per day of output, and newer models can go to 10-100
PB per day of output. At the same time, parallel systems are
expected to become even more I/O bound, and thus, simulation
programs will be slowed down even more by the data output
steps.

While a range of new techniques, and at different system
levels (applications, storage systems, framework designs) will
be needed to address the resulting ‘big data’ problems, one
key technology for reducing data volumes is compression.
Compression has been widely used in computer systems [9],
[12], and in recent years, it has been applied on floating point
data that is output by scientific simulations [6], [7], [11], [14],
[18].

However, we note that most of the work with simulation
has been in the context of storing, managing, and moving the
datasets, i.e, the second of the three ‘big data’ issues related
to scientific simulations we listed. Clearly, it is also important
to decrease the amount of data that needs to be transferred -
from clusters where a simulation is run to another cluster or
tertiary storage, to a dissemination portal, and/or a system on
which the data is analyzed or visualized. However, there is
almost no work on enabling transparent parallel compression
to speedup a simulation program that outputs large volume of
data.

Thus, two important question we need to answer are: “Can
compression help save time when data is output from, or input
into, a parallel program?”, and “ How can a scientist’s effort
in using compression with a parallel program be minimized?”.
With respect to the latter, we will like to note that parallel
simulations are extremely complex programs, and not at all
easy to modify. Moreover, these simulations are often executed
by scientists that did not implement them, and instead, are
simply interested in analyzing their output. Alternatively, a
visualization program that works with a large simulation
dataset has its own complexity, and modifying such programs
is not easy. Thus, compression needs to implemented without
any non-trivial modifications to such simulation or analysis

Process Process Process Process

Scientific Data Management Library
MPI-IO

(Parallel) File System

(a) Parallel I/O Libraries Data Flow

netcdf temperature_v4 {
dimensions: // names and lengths

time = UNLIMITED;
interface = 27;
cells = 2621442;
corners = 5242880 ;
...

variables: // type, name and attributes
 double time(time) ;
 time:long_name = "Time" ;
 time:units = "days since 1901-01-01" ;
 ...
 float temperature(time, cells, interfaces) ;

 // variable attributes
 temperature:long_name = "Potential temperature" ;

 temperature:units = "K" ;
 ...

data: // beginning of data
time = 777600, 788400, 799200, 810000, ….;
temperature =

 201.2936, 217.4867, 223.3362, …..
}

(b) Example NetCDF Header

Steps for writing data:
1. ncmpi_create(MPI_Comm comm, char *path, int cmode,

MPI_Info info, int *file_id);
2. ncmpi_def_dim(...); // If dimensions do not exist
3. ncmpi_def_var(...); // If variables do not exist
4. ncmpi_enddef(file_id);
5. ncmpi_put_vara_all(int ncid, int varid, MPI_Offset start[],

MPI_Offset count[], void *buf, MPI_Offset bufcount,
MPI_Datatype datatype);

6. ncmpi_close(file_id);

Steps for reading data:
1. ncmpi_open(MPI_Comm comm,

char *path, int omode, MPI_Info info, int *ncidp)
2. ncmpi_inq(...); // Retrieve variable information
3. ncmpi_get_vars(int ncid,

int varid, MPI_Offset start[], MPI_Offset count[],
MPI_Offset stride[], void *buf,int count,
MPI_Datatype datatype)

4. ncmpi_close(file_id);

(c) PnetCDF Write and Read Operations

Fig. 1. PnetCDF Basic Operations and Resulting File Header

programs.
This paper addresses these problems, by focusing on one

of a small number of popular scientific data management
libraries. We note that formats like HDF5 and PnetCDF (and
associated APIs and libraries for parallel I/O) are extremely
popular in many scientific communities. Thus, it is clearly
desirable that compression be built into such libraries, and
transparently be used by applications that either output or
read from these datasets. Our current solution has been im-
plemented as part of PnetCDF, though our design ideas are
applicable to other formats, such as HDF5, also.

Several challenges arise in integrating compression with
a library like PnetCDF. First, applying compression with
parallel writes is non-trivial as destination offsets that different
processes need to write can change. We describe several
approaches for integrating compression with parallel writes,
which include a method that performs sparse storage of
output blocks, a method that uses metadata exchange to allow
dense storage, and an extension to this scheme based on user
provided compression ratios. The next problem we address
is of maintaining transparency, i.e, allowing an existing ap-
plication that outputs data in NetCDF to work with minimal
changes; and similarly, allowing an existing application that
reads NetCDF data to work with compressed data. We show
how this can be accomplished. Finally, another challenge is
choosing the appropriate compression algorithm, since the
cost of compression and decompression must be very small,
and compression ratios should be large. We have developed a
method that exploits properties of simulation datasets.

We have extensively evaluated our methods and imple-
mentation. Using microbenchmarks, we show the benefits of
compression in improving read and write times for parallel
applications, especially as the number of processes increases
and key parameters (like stripe size) are carefully chosen.
Next, using one scientific application that outputs its state
and two applications that analyze simulation output, we show

that execution times of applications can be reduced by using
compression.

II. BACKGROUND: A SCIENTIFIC ARRAY STORAGE
FORMAT, API, AND LIBRARY

Recall that one of our key goals is to apply parallel
compression while requiring at most trivial modifications to
simulation codes that output data, or applications that analyze
this data. A large number of scientific simulation store their
data in either NetCDF (or PnetCDF) or HDF5 formats. The
applications that output the data, and the ones analyzing the
data extensively use the corresponding libraries and APIs.
Our implementation has been carried out in the context of
PnetCDF, though the conceptual issues are identical for HDF5.
As a background for presenting the details of our design, we
first summarize the main features of PnetCDF.

Parallel NetCDF (PnetCDF) (as well as HDF5) provide
high performance parallel I/O operations. The parallel I/O
mechanism relies on MPI-IO and mimics its API. Therefore,
scientific applications can easily implement I/O operations
using these libraries and utilize the features of MPI. For
example, users can fine-tune their applications’ I/O operations,
such as collective calls and data shipping, using MPI-specific
features and operations. In addition, hints about the file sys-
tems and access patterns can be passed to the MPI-IO layer,
and further optimizations at the I/O layer can be enabled.
In Figure 1(a), we illustrate how parallel I/O operations are
typically performed in these libraries.

One of the key challenges we address is to store a com-
pressed PnetCDF file in a fashion that an application designed
to read and analyze an uncompressed PnetCDF files can still
work with a very trivial modification (a function call). To be
able to explain later how this is accomplished, we show how
PnetCDF header information is stored in Figure 1(b). PnetCDF
preserves the Unidata’s NetCDF file-format. Therefore, stored
dataset is portable, self-describing and space-efficient. The
description of the data is provided at the very beginning

of the created file. Typically this header includes the types,
dimensions, attributes and structures of variables. Since the
metadata information is carried along with the data, scientists
can recall the properties of the dataset with minimum effort.
Header information starts with the definition of the dimensions
where each dimension name and size are specified. Then, the
variables are defined with their types and dimensions. The
dimensions, along with the data type, determine the size of a
variable in file.

We summarize the steps that involve write and read opera-
tions of PnetCDF in Fig. 1(c). These operations are similar to
MPI-IO operations, but with subtle differences. Specifically,
in steps 2 and 3, user needs to define the dimensions and
variables in order to inform library about the properties of
data. If dimensions are predefined, user can simply use this
information to create the variable. Once the variable is defined,
its id can be used to write data to the disk. In order to update
and synchronize the header information among processes,
ncmpi enddef and ncmpi close functions must be called after
the definition and write operations, respectively. The read
operations follow a similar set of steps. First, netCDF file
needs to be opened with proper read mode. Then, the header
information in the file is read by the processes in the system.
After header information is available in every process, the
variable can be read collectively using its id. If the variable id
is unknown, it can be inquired using ncmpi inq function call.

III. PARALLEL AND TRANSPARENT COMPRESSION FOR
PNETCDF

Compression can decrease the size of generated datasets,
and by reducing the volume of data to be written on disks,
benefit the execution times. Similarly, for an application that
analyzes data, if the dataset is stored in a compressed fashion,
we can reduce the volume of data to be read from disks,
potentially reducing the execution time of the application. Our
goal is to achieve this while maintaining transparency to users
of applications - i.e. require at most a very trivial change
to existing applications that write or read large scientific
data. While integrating compression with PnetCDF, we require
scientific code to simply perform an additional function call.
Therefore, (de)compression functions can be registered to the
system and applied to the outputs being produced. Similarly,
we expect that the NetCDF file which stores compressed array
sections can then be processed by another application that
reads NetCDF data.

It turns out, however, that such an integration is non-trivial.
There are three specific issues that need to be addressed:

• Applying Compression in Parallel: While there are efforts
in context of scientific data management libraries for
enabling compression, they are limited in terms of func-
tionality. For instance, HDF5 enables compression using
a single process, however application of compression
with parallel write operations is not supported1. This is
because compression produces variable-size chunks in the
system. These chunks can be sequentially written to a file

1Please see http://www.hdfgroup.org/hdf5-quest.html#p5comp

by a single process, however, with multiple processes -
where each process can perform independent I/O - these
operations can become a challenge.

• Transparency: A scientific data management library, such
as PnetCDF, involves significant complexity. We want to
support compression with only very trivial changes to an
application that outputs NetCDF data. At the same time,
we want an existing analysis application to be able to
handle a compressed NetCDF file, instead of a regular
file, with only very trivial changes.

• Performance: Another issue while applying compression
during I/O operations is the overhead of compression.
Typically, generic compression algorithms cannot per-
form well with scientific datasets. Therefore, domain
specific compression algorithms, which are tailored to
dataset properties, are desirable for high performance.
However, integrating different compression algorithms
for different datasets, or variables, is difficult.

A. Applying Compression with Parallel Writes

We now discuss different schemes for integrating compres-
sion with parallel write and read operations.
Compression with Sparse Storage: In this method, after
processes generate data, it is passed to the compression layer.
Next, the data is divided into splits, and the compression algo-
rithm is applied on each split. Finally, these splits are written
without changing their original offset addresses in the target
file. In Figure 2, we show how this method works. Unlike
a method we will present later, no additional communication
between processes is needed with this strategy. The key idea
here is that compressed file is stored in a sparse fashion, i.e,
it has unused space in between.

P0 P1

Compression Layer

size(x)

2*size(x)

size(x)
Off3 Off4 Off5

Off3 Off4 Off5

Off0 Off1 Off3 Off4 Off5Off2

size(x)
Off0 Off1 Off2

Off0 Off1 Off2

size(x)

Compression Layer

Fig. 2. Write operation using Sparse Storage. Each block corresponds
to a logical chunk/split. Colors represent the data, whereas white spaces
correspond to unused data blocks.

Since application only needs to write and read the com-
pressed splits, the I/O performance can still be improved.
However, there are several problems with this approach. First,
the processes can spend time on seek operations, which can
negate many of the benefits of writing or reading less data.
Further, the final size of the file is almost the same with
the original dataset size because of the empty blocks in
the compressed data. Thus, there is no advantage in terms

of reducing storage space. However applications can still
potentially benefit from the compressed splits, if bandwidth
is the main bottleneck in the system.
Compression with Dense Storage: In this method, the
compressed splits are stored as contiguous data blocks, thus
smaller data file is produced. Figure 3 presents the execution
flow of this method. Similar to sparse compression method,
data is passed to the compression layer, and compressed splits
are generated. Then, processes exchange metadata informa-
tion of their compressed splits through an additional round
of communication, and new destination offset addresses are
calculated. For instance, in Figure 3, P0 broadcasts Off

′

0

and Off
′

2 with their corresponding size information. Simi-
larly, P1 exchanges Off

′

3 and Off
′

5 with size information.
Next, P1 recalculates the initial offset address according to
Off

′

3 = Off
′

2+split sizeOff
′
2
, and all the other local offset

addresses are updated according to the new Off
′

3 and its size
information. Finally, the compressed splits are written to the
disk.

comp(x)’+comp(x)’’

Compression Layer

comp(x)’

size(x)

P0 P1

Off0 Off1

’Off0

Off2

’Off1 ’Off2

’Off0 ’Off1 ’Off2 ’Off3 ’Off5’Off4

M
et

ad
at

a
 E

xc
h

an
ge

Compression Layer

size(x)
Off3 Off4 Off5

’Off3 ’Off4 ’Off5

comp(x)’’

Fig. 3. Write operation using Dense Storage. New offset addresses of
the compressed data blocks are calculated after compression and metadata
exchange.

Metadata exchange phase in dense compression results in
extra communication time compared to sparse compression,
however the resulting file is smaller. Therefore, file transfers
can be done more efficiently. Also the number of required
MPI-IO operations is smaller as compared to compression with
sparse storage. Specifically, while the compression layer needs
to perform I/O operation for each of the compressed split in
sparse compression, single collective call is sufficient for the
dense method. The continuous write operations can also be
optimized by collective MPI-IO operations, which yield higher
I/O throughput.

On the other hand, not all applications can perform continu-
ous write operations. To illustrate this, consider the following
example. Suppose we have two processes, P1 and P2, which
produce four data segments, S11, S12, S21, and S22, that
need to be stored contiguously, in the above order. Assume,
however, P1 and P2 need to perform certain computations,
and generate S11 and S21, respectively. After writing these
segments, they move onto computations and produce S12 and
S22. In this case, P2 cannot know the destination offset ad-
dress of S21, unless P1 generates S12 and applies compression

on it. While restructuring of the computation and/or storage
can address this situation, recall that our goal has been a
transparent compression.

2 * size(x)’

P0 P1

Compressed
Data

Surplus
Space

Error
Padding ’Off0

’Off1 ’Off2 ’Off3 ’Off4 ’Off5

Compression Layer

size(x)
Off0 Off1

’Off0

Off2

’Off1 ’Off2

size(x)
Off3 Off4 Off5

Compression Layer

size(x)’

’Off3 ’Off4 ’Off5

size(x)’

Fig. 4. Write operation using Hybrid Method. After compression, the
colored blocks represent the compressed data; lined blocks are the surplus of
expected compression space; and white spaces represent the space for handling
overflowed data.

The compression with dense storage can be made more
broadly applicable through a hybrid method. The idea here
is that if the application developer can provide the expected
compression and error ratios to the system, then compressed
split sizes and offset addresses can be calculated in ad-
vance. For instance, assume that compression layer of each
process works on 100MB of data split, and expected com-
pression and error ratios are 1.35 and 0.05, respectively.
Then the computed split size becomes ∼76.9MB, in which
∼2.9MB of space is reserved to address possible inaccuracy
in user estimate of the compression ratio. Since all original
splits share the same size information, destination offset ad-
dresses can be derived. Specifically, split sizes can be calcu-
lated with compressed split size = original split size ×
(1/(comp ratio− err ratio)). Similarly, the destination off-
set addresses of the compressed splits can be computed using
Off

′

i = Offi×(1/(comp ratio−err ratio)), where i > 0.
In Figure 4, we present the data execution flow for improved
hybrid method.

Here, prior knowledge about the compression ratio elim-
inates the metadata exchange requirement. If the expected
compression ratio does not meet the real compression ratio,
the padding for the errors can handle the overflowed data.
In figure, surplus space+ compressed data corresponds to
the expected split size after compression, and error padding
refers to the additional space for managing the overflowed
data.

This method can eliminate the metadata exchange overhead,
and also make the approach more broadly applicable as
compared to the original dense method. However, it requires a
reasonably correct estimation of compression ratio. This can be
difficult to accomplish if the application developer has limited
information about the data. In this case, sampling can be used
to estimate compression ratios.

TABLE I
API FOR SUPPORTING COMPRESSION IN PNETCDF

Data Type Declarations

typedef struct {
off_t orig_offset; // Original offset address of data block
size_t orig_size; // Original data block size
off_t comp_offset; // Dest. offset address of compressed data block
size_t comp_size; // Compressed data block size

} comp_metadata_info_t;
// Metadata information of the compressed data blocks

typedef struct {
void* user_args;
size_t user_args_size;
chunk_args_t* ch_arg;

} comp_args_t;
// User defined arguments for
compression functions

Required User-Defined Functions for Compression

size_t (*comp_f)(void* input, size_t in_size, void* output, size_t out_size, comp_args_t* comp_args);
Description: User implemented compression function is applied to input data chunk, and computed data is written to output

size_t (*decomp_f)(void* input, size_t in_size, void* output, size_t out_size, comp_args_t* comp_args);
Description: User implemented decompression function is applied to input compressed data chunk, and computed data is written to output

Introduced PnetCDF Functions

int ncmpi_comp_reg(int var_id, size_t (*comp_f)(...), size_t (*decomp_f)(...), comp_args_t* u_args,..);
Description: Registers user defined (de)compression functions and variable id to PnetCDF. Also sets the system specific parameters, such as split size.

P0

MPI-IO

Compression
Layer

NetCDF
Header

Application

Metadata

Fi
le

 S
ys

.

P1

MPI-IO

Compression
Layer

NetCDF
Header

Application

Metadata

Header Info. Header Info.

Fig. 5. Write Operation using Compression System

B. System Design for Transparent Compression

We now describe how compression, including the possibility
of dense or hybrid storage, is integrated while keeping the
process transparent to the application. In Figure 5, we show the
modified version of PnetCDF which accomplishes this. First,
developer informs compression system about target variable
and the parameters that are related with the compression opera-
tions. Through calling ncmpi_comp_reg function, variable
id, pointers to (de)compression algorithms and user specific
data structures are registered to the compression system. Also
system parameters such as buffer and split (chunk) sizes are
defined in this stage. Once these information are provided,
compression system can retrieve the variable information using
netCDF header file and apply user defined functions.

The important data structures and function definitions are
provided in Table I. After the registration of compression

parameters and relating the variable, data can be written to the
file using compression system. Initially, application prepares
data and passes it to the PnetCDF library, exactly as would
happen in the original application. The compression layer,
then, divides the original data into split size chunks, and
applies user provided compression algorithm. The size of the
splits determine the granularity of data accesses. Specifically,
the smaller split sizes enable fine grain data access to the
elements in compressed chunks. However, finer granularity
might also decrease the compression ratio. The larger split
sizes, on the other hand, result in coarse grain data access,
and might provide higher compression ratios.

After splits are compressed, the metadata information of
each split is generated, which consists of orig offset, orig size
and comp size information. During the compression operation,
generated splits are written into an internal buffer. Therefore,
extra copy operation is avoided. Once the compression is
performed on data, compression layer exchanges the metadata
information of splits with a collective call, and calculates
the destination offset address of each split. Then, the offset
information of the compressed chunks, comp offset, are set.
This collective call is initiated from within the modified
PnetCDF library, i.e., there is no change in the application
code. Lastly, the final layout of the data is updated on the
netCDF header, and a consistent global view of the data layout
is achieved.

Figure 5 illustrates the process of writing data splits to a par-
allel file system using MPI-IO collective calls. Optimization
of write operations can significantly affect the performance.
Specifically, if the alignment of the compressed data chunks
on file are not done properly, then write operations can create
contention on the disk and result in overhead.
Reading Compressed Scientific Data: The read operation
of the compressed data is the same, irrespective of whether
sparse or dense storage is used. Before application starts
accessing the stored data, the compression parameters are

registered in the system. Also, the location of the metadata
file is provided to the compression layer and read into the
memory. Once the application layer requests data from the
PnetCDF, the compressed splits that correspond to the original
offset addresses are detected in the metadata file. Then,
these compressed chunks are retrieved from the file, and
user defined decompression algorithms are applied within the
modified PnetCDF library. The requested elements are directly
decompressed into the user provided buffer. The compression
layer applies optimizations while requesting the compressed
splits. For example, if the requested data is continuous, then
compression layer combines the compressed split requests into
a single collective call. Therefore, the number of I/O operation
on file system is decreased. Furthermore, compressing the
dataset using many splits increases the depth of parallel
decompression.

C. Compression Method and Performance
Compression has been used in different areas of computing

systems, including file systems, big data processing middle-
wares and database management systems. However, these
systems typically focus on generic data compression. Unfortu-
nately, most of the scientific datasets consist of high precision
floating point numbers, which are known to be difficult to
compress by generic compression algorithms. Although there
have been works on scientific data compression [7], [18], we
focus on domain specific approaches.

1000…11010 11111 111101 11111

1000…01010 11001100101 11100101 11100111

1000…01010 110111101 10110110101110 111101

1000…01010 110001010101 11111 11111

t3

299.55 299.55 299.54 299.54

299.75 299.79 299.78 299.76

300.01 300.05 300.09 300.08

302.00 302.05 302.05 302.05

t1
100010.….10 00…..0

100….10101010 00…0100101

100…101010 00…01101

100….111001010 0…01010101

t2

Fig. 6. Example: Compressing Scientific Datasets

Our compression approach is based on differential com-
pression [6]. Basically, our method exploits the relationship
between adjacent cells, and stores the difference. Consider the
example in Figure 6. Assume that we have a multidimensional
array which consists of temperature values of neighboring
locations. Since the temperature value of a coordinate is
expected to be similar to its neighboring locations, the dif-
ferences are not significant. This property can be exploited
for efficient compression. Specifically, we can apply xor
among adjacent cells and store the differences along with the
number of zeros. We can perform this operation on t1, using
t1[i][j]⊕ t1[i][j − 1], and t2 can be generated. Note that, the
generated values consist of two parts, a sequence of leading
zeros and a difference part. Next, the number of leading zeros

are counted and represented in bits. If, for example, an array
consists of single precision floating point numbers (32 bits),
then the number of leading zeros can be represented with 5
bits. Therefore, we can store the number of leading zeros to
the first five bits, and append the remaining difference part.
The final compressed array is shown in t3. Notice that, the
array t2 is virtual, i.e. t3 can directly be derived from t1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our parallel
compression system using a set of microbenchmarks, one
parallel simulation application that outputs a NetCDF file, and
two analysis applications that read (and analyze) NetCDF files.
Specifically, we conducted the following experiments. First,
we focused on characterizing the benefits of compression for
a parallel program that writes or reads large-scale datasets. In
the process, we also studied the impact of different parameters,
such as stripe sizes in parallel file system, on performance. Yet
another goal was to compare the performance against compres-
sion implemented in HDF5 library (where compression can
only be applied sequentially). Next, our goal was to understand
how parallel compression can benefit a scientific simulation
program that snapshots its state periodically. Finally, we focus
on applications that read and analyze scientific datasets, and
examine the benefits of using compression.

A. Experimental Setup

We performed our experiments in our local cluster at the
Ohio State University. The cluster consists of 160 nodes where
each node has 12 GB memory and 8 cores (Intel Xeon E5630,
2.53GHz). The nodes are connected with Mellanox ConnectX-
2 InfiniBand QDR cards (40Gbps). The compute nodes are
attached to a parallel file system, Lustre, which provides high
I/O throughput. Our file system consists of 4 storage nodes
and each node has 2 physical disks. The total number of object
storage target (OSTs) is 8, and there is one metadata server in
the system.

As a scientific simulation application, we used miniMD,
which is one of the compute and communication intensive
mini-applications in Mantevo project[2]. MiniMD is a light-
weight version of LAMMPS molecular dynamics application.
It simulates the interaction of atoms, and computes parameters
such as location and temperature. In our experiments, we
set the problem size of miniMD to 128 × 128 × 128, and
specified the number of timesteps as 500. For each timestep,
the coordinate information of the atoms is stored, which is
∼97 MB in size, in a NetCDF file. The idea is that such a
file will allow a scientist to visualize movement of particles
later. The total size of the generated data after 500 iterations
is ∼49 GB.

We evaluated the read performance of our system using
different data analysis applications. The first application, AT,
calculates the average temperature of atmospheric layers in
climate dataset. The second application, MATT, computes the
minimum, maximum and average temperatures in climate
dataset with respect to different time frames. The inter-
communication overhead of this application is higher than

the AT, and it requires larger memory to operate. Both data
analysis applications perform their computation on Global
Cloud-Resolving Model (GCRM) climate dataset. The climate
dataset consists of temperature values with respect to time
and location. It divides atmosphere in cells and layers. The
temperature values are stored as single precision floating point
numbers where each of them represents a Kelvin degree. We
have generated two climate datasets, which are 34 GB and 136
GB, respectively. They are stored in NetCDF 64-bit format for
large data storage support.

In all our experiments, each version is run at least five times,
and the average of the results are presented. All applications
and the PnetCDF library are compiled with highest optimiza-
tion parameters.

B. Microbenchmarks
In this section, we analyze the effects of file system param-

eters and evaluate the benefits of parallel compression using
microbenchmarks.

2 4 8 16 32 64

0

50

100

150

200

250

300

350

Stripe Sizes (MB)

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

P_Original

P_Dense

P_Sparse

Fig. 7. Comparing Write Times with Varying Stripe Sizes; Versions: Original
(Uncompressed), Compression with Sparse Storage, and Compression with
Dense Storage; Experimental Setup: 64 processes and 34 GB total output;
Chunk size is 32 MB, and stripe count is 8.

In Figure 7, we show the performance of our compression
system while varying stripe sizes. Stripe sizes determine
the distribution of data chunks to OSTs, and therefore, it
directly affects the parallelization of I/O operations and con-
tention on the physical disks. The experiment involves varying
stripe sizes with all three versions, which are P_Original,
P_Dense, and P_Sparse. P_Original shows the write
times of uncompressed dataset to a PnetCDF file. Similarly
P_Dense and P_Sparse versions represent the write times
of dense and sparse compression schemes, respectively. The
microbenchmark uses 64 processes that output a total of 34
GB dataset (uncompressed). Processes iteratively write data
to the disks, in which each process writes 270 MB data for
each iteration. The split size is set to 32 MB, hence the
data is divided into 9 chunks in each iteration. The average
compression ratio of our algorithm is 1.9:1. Therefore, the
versions with dense and sparse storage write a total of 17.7
GB data, where each process stores 158.8 MB data for each
iteration. Also note that the average size of each compressed
chunk is 16.8 MB, whereas the original is 32 MB.

Overall, the experiment shows that with their respective
best choices for stripe sizes, dense and sparse storage can
reduce execution times by nearly 50% and 35%, respectively.
However, the behavior of different versions under different
stripe sizes is intriguing. Our first observation is the sharp
decrease in execution time after 16 and 32 MB stripe sizes
for P_Original and P_Dense versions, respectively. The
main reason of this is the better utilization of the disks and
minimized contention. Specifically, the number of OSTs and
disks determine the available parallelism on the file system;
and the stripe size specifies corresponding offset addresses of
the OSTs. For example, if the stripe size is 32 MB and there
are 8 OSTs in the system, then system can properly align 256
MB of continuous data to these OSTs and parallelize the write
operation. Since each process writes 270 MB data for each
iteration in P_Original, 32 MB stripe size gives best per-
formance. Similarly, P_Dense shows the best performances
starting from 16 MB, as it is writing less data in all.

Now, let us examine the performance of compression with
P_Sparse. With smaller stripe sizes, P_Sparse version
improves the performance, but it should be noted that we
are not obtaining the best uncompressed I/O performance.
Processes in sparse compression perform write operations
after compressing each split; and with small stripe sizes,
the distribution of the splits are more balanced. At larger
stripe sizes, the number of write operations to each OST
increases, and furthermore, non-contiguous write operations
reduce overall performance.

1 2 4 8 16 32 64

0

100

200

300

400

500

600

700

800

Number of Processes

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

P_Original

P_Sparse

P_Dense

H_Original

H_Comp

Fig. 8. Comparing Write Times with Varying Number of Processes; Ver-
sions: Original (Uncompressed), Compressed Dense and Sparse Storage using
PnetCDF, and HDF5 Original(Uncompressed) and Sequential Compression;
Stripe size is 32 MB.

In Figure 8, we present the write times of the same dataset
with varying number of processes. The stripe size is set to 32
MB for all versions. In this set of experiments, we also perform
a comparison against HDF5 compression. Although, HDF5
supports sequential compression with single process, parallel
compression is not available. Also, the compression method
we have implemented using our framework was not available
with HDF5. Therefore, we implemented our compression
algorithm in HDF5 library in order to facilitate a comparable
experiment. In all, five different versions have been used
in these experiments. P_Original and H_Original ver-
sions involve uncompressed writes with PnetCDF and HDF5

libraries, respectively. P_Sparse and P_Dense versions
represent executions in which the data is compressed using
sparse and dense storage methods, respectively, both with
PnetCDF. Sequential compression with HDF5 is presented
as H_Comp, where we can only present result for a single
process.

Our first observation from Figure 8 is the overhead of com-
pression with small number of processes. While the number of
processes increases this overhead is divided among processes
and application starts benefiting from the compression. Note
that parallel applications with write operations tend to become
more I/O bound as the number of processes increases. Since
the contention on file system and network increases with in-
creasing number of processes, I/O operations start introducing
overhead in the system. Compression, on the other hand,
is a compute-intensive operation which is embarrassingly
parallel. Thus, compression times decrease linearly with the
number of processes, whereas the I/O times do not, and with
increasing number of processes, the time spent on compression
is easily outweighed by I/O times. Compression in PnetCDF
followed by dense storage is again almost always better than
sparse storage. The improvement with P_Dense is faster than
P_Original and H_Orig versions by an average of 1.79
and 2.71, respectively, with 4 or more processes.
H_Comp version follows a similar trend with P_Dense

where the small number of processes introduces overhead in
the system. While sequential compression can reduce storage
and data transfer costs, parallel compression is a desirable
feature for improving the performance of I/O operations.

1 2 4 8 16 32 64

0

50

100

150

200

250

300

350

400

Number of Processes

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

P_Original

P_Dense

H_Original

H_Comp

Fig. 9. Comparing Read Times with Varying Number of Processes; Versions:
Original (Uncompressed), Compressed Dense Storage using PnetCDF, and
HDF5 Original(Uncompressed) and Compressed; Stripe size is 32 MB.

Figure 9 shows the read performance of modified PnetCDF
and HDF5 using compressed and original data. We used
the same setup with previous experiments and varied the
number of processes. Since we have already demonstrated that
compression with dense storage is better than sparse storage,
we restrict ourselves to only the dense version, P_Dense. In
this set of experiment, we also present the performance results
of compressed read operations in HDF5 with varying number
of processes.

Similar to write operations, compression introduces some
overhead with small number of processes. However, after 4

processes, application starts benefiting from compression, i.e,
the cost of decompressing the file is smaller than the reduction
in read times achieved. Specifically, the speedups of P Dense
over P Original are between 1.38 and 1.78 after 4 processes.
Although the ability to compress files during parallel writes is
not available with HDF5, parallel reads can still be performed.
The parallel read performance of HDF5 using compressed
data is shown with H_Comp, where this version improves the
read times by 31.4-60.7% after 4 processes considering the
H_Original.

C. Impact on a Scientific Simulation Application

Most of the scientific simulations are long running applica-
tions, which generate large volumes of data. There might be
several reasons to store this data. The first, and increasingly
popular, reason is the need for visualizing or post-analysis
of the progress of simulations in order to understand the
underlying phenomenon. Another reason is tolerating failures.
Since these scientific simulations are prone to failures due
to their long running nature, periodically checkpointing the
state information of application can significantly reduce the
re-computation time.

We used miniMD, which iteratively calculates the location
of atoms according to force information, as a representative
scientific application. It outputs the location of all particles af-
ter each time-step. We integrated modified version of PnetCDF
into miniMD simulation application, and observed the execu-
tion times with and without compression. The original size of
written data is ∼47 GB, whereas the compressed size is ∼35
GB.

0

500

1000

1500

2000

2500

3000

3500

16 32 64 128 256 512

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

Number of Processes

P_Original

P_Dense

Fig. 10. MiniMD Application Execution Time - With and Without Com-
pression and Different Number of Processes

The results are presented in Figure 10. With 16 processes,
our compression system introduces 3% overhead, which is
because of the compression cost. However, with increasing
number of processes, compression benefits the application
execution time. Specifically, with 32 or more processes, the
total execution time of the application decreases between 2%
and 22%, where the best gain, 22%, is seen with 512 pro-
cesses. The computation and communication times in miniMD
application dominate the write time. In order to present the
advantage of using compression, we show the elapsed time of
write operations in Figure 11. Speedups for write operations

using compression range from 1.9 to 2.35 with 32 or more
processes. Overall, increasing number of cores in parallel
machines and systems can create contention on file system and
network, however compression can benefit such simulations
and minimize the overhead. This observation is more obvious
when applications are I/O bounded.

0

100

200

300

400

500

600

700

16 32 64 128 256 512

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

Number of Processes

P_Original

P_Dense

Fig. 11. MiniMD Application Write Time - With and Without Compression
and Different Number of Processes

D. Impact on Scientific Data Analysis Applications

We had previously shown that compression can improve
performance for a microbenchmark that performs parallel read
operations. In this section, we investigate the performance
of data analysis applications with and without compression.
These applications first read the data using the modified
PnetCDF or HDF5 library, and then perform the analysis.
The original size of the dataset is 136 GB. This dataset is
compressed and stored using 32 MB chunks and stripe sizes,
and the resulting dataset size is close to 71 GB.

1 2 4 8 16 32 64

0

200

400

600

800

1000

1200

1400

Number of Processes

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

P_Original

P_Dense

H_Original

H_Comp

Fig. 12. AT Application Execution Time with Different Number of Processes

We present the AT application performance using com-
pression system in Figure 12. Similar to previous set of
experiments, both H_Comp and P_Dense versions signif-
icantly benefit the application execution while the number
of processes increases. The compression system introduces
some overhead with small number of processes in P_Dense
version. However after 8 processes, compression system im-
proves the performance of I/O operations. The speedups for
P_Dense against P_Original are between 1.74 and 1.83
after 8 processes, where the highest speedup is observed with

64 processes. H_Comp version also shows a similar trend with
P_Dense, i.e. increasing number of processes shows better
performance than the small number of processes.

1 2 4 8 16 32 64

0

200

400

600

800

1000

1200

1400

Number of Processes

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

P_Original

P_Dense

H_Original

H_Comp

Fig. 13. MATT Application Execution Time with Different Number of
Processes

We repeat the same set of experiments with MATT applica-
tion and present results in Figure 13. Again, read operations on
compressed dataset present better execution times with higher
number of processes. Since the MATT application involves
more communication and computation, its execution times are
higher than the AT application. For this set of experiment, the
reduction in execution times are between 29% and 45% for
P Dense version, and range from 46% to 58% for H Comp
version after 4 processes.

V. RELATED WORK

Compression has been used widely in order to ease the man-
agement of large datasets [12], [9]. Application of compression
algorithms in scientific datasets and data management libraries
has received significant attention in recent years. There are
several projects which focus on improving the I/O throughput
of scientific applications, and compression has been attempted
in the context of many of these. PnetCDF [13], [4] and Parallel
HDF5 [3] are both widely used scientific data management
libraries. Although there have been research on improving
data analysis, I/O throughput and data transfer performance of
scientific data management libraries [22], [20], utilization of
compression in these libraries is limited. Currently, to the best
of our knowledge, PnetCDF does not provide any compression
feature. HDF5, on the other hand, lets users apply generic
compression algorithms, such as ZLIB and SZIP, but only with
single process, i.e. there is no support for parallel compression.
The main reason for this limitation is that variable-length
chunks that are produced after compression, which has been
addressed in our approach.

ADIOS [15] is another scientific data management library
which lets developers decide on the I/O interface using an
XML configuration file. ISOBAR compression method [18]
has been integrated with ADIOS [19], where efficiency being
maintained by interleaving compression with I/O. Although,
there are similarities between our compression method and
ISOBAR, our methods for parallelizing compression in scien-
tific data management libraries is not limited with a particular

compression approach, and moreover, we allow transparent
compression for the large class of applications where PnetCDF
is used.

Data-intensive middleware/storage systems also extensively
use compression to improve I/O throughput. Some of these
efforts include compression in Hadoop[1], BlobSeer[16],
HBase[5], and BigTable[8]. These systems do not provide
scientific data formats. Our work focuses on supporting com-
pression inside a widely used scientific data management
library which can provide such formats.

Supporting efficient fault tolerance for scientific applications
is another area where compression has been applied. Islam
et. al. developed MCREngine [10], which is a checkpointing
system library that uses compression to improve I/O through-
put. Their system exploits the information provided by the
scientific data management libraries in order to detect the sim-
ilar variables and the best compression algorithm. Our main
contribution is in supporting transparent parallel compression
which requires minimum effort from the developer, and its
application is not limited to checkpointing for fault-tolerance.

Generic compression algorithms typically cannot provide
good compression ratios with scientific datasets which are
highly entropic. Therefore, efficient domain-specific compres-
sion algorithms are desired. In our previous work [6], we
proposed a compression methodology for scientific datasets,
which has also been implemented in our current work. There
are also a number of other efforts that have focused on efficient
compression of this type of data [17], [14], [7], [18], [11].

VI. CONCLUSION

In this paper, we have investigated the use of compression
for programs that output or analyze large-scale scientific
data. First, we introduced two storage methods, sparse and
dense, which enable scientific applications to perform parallel
compression during write operations. Then, we integrated
our approaches to a widely used scientific data management
library, PnetCDF, and provide transparent compression while
exploiting and maintaining the properties of NetCDF. The
modified PnetCDF library exposes an API in which developers
can easily plug different compression algorithms and relate
them with data variables.

We have evaluated our methods using microbenchmarks,
a scientific simulation application, and two scientific data
analysis applications. Our experiments show that compression
can significantly improve the I/O throughput of applications.
For simulation application, which performs periodic write
operations, our dense storage method improved the execution
time up to 22%, while decreasing the storage requirement by
25.5%. The average speedup of data analysis applications is
1.36, where the maximum speedup is 1.83.

Acknowledgments: This work was partially supported by NSF
award ACI-1339757.

REFERENCES

[1] The Apache Hadoop Project. http://hadoop.apache.org/, 2012. [Online;
accessed September-2012].

[2] Mantevo Project. http://mantevo.org, 2013. [Online; accessed October-
2013].

[3] Parallel HDF5. http://www.hdfgroup.org/HDF5/PHDF5, 2013. [Online;
accessed October-2013].

[4] Parallel netCDF. http://trac.mcs.anl.gov/projects/parallel-netcdf, 2013.
[Online; accessed October-2013].

[5] The Apache HBase. http://hbase.apache.org/, 2013. [Online; accessed
October-2013].

[6] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt. Integrating
online compression to accelerate large-scale data analytics applications.
In IPDPS, pages 1205–1216. IEEE Computer Society, 2013.

[7] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE Trans. Computers, 58(1):18–
31, 2009.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2),
2008.

[9] F. Douglis. On the role of compression in distributed systems. SIGOPS
Oper. Syst. Rev., 27(2):88–93, Apr. 1993.

[10] T. Islam, K. Mohror, S. Bagchi, A. Moody, B. de Supinski, and
R. Eigenmann. Mcrengine: A scalable checkpointing system using data-
aware aggregation and compression. In High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference
for, pages 1–11, 2012.

[11] J. Iverson, C. Kamath, and G. Karypis. Fast and effective lossy
compression algorithms for scientific datasets. In C. Kaklamanis, T. S.
Papatheodorou, and P. G. Spirakis, editors, Euro-Par, volume 7484 of
Lecture Notes in Computer Science, pages 843–856. Springer, 2012.

[12] D. A. Lelewer and D. S. Hirschberg. Data compression. ACM Comput.
Surv., 19(3):261–296, 1987.

[13] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netcdf:
A high-performance scientific i/o interface. In Supercomputing, 2003
ACM/IEEE Conference, pages 39–39. IEEE, 2003.

[14] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-
point data. Visualization and Computer Graphics, IEEE Transactions on,
12(5):1245–1250, 2006.

[15] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible
io and integration for scientific codes through the adaptable io system
(adios). In Proceedings of the 6th international workshop on Challenges
of large applications in distributed environments, pages 15–24. ACM,
2008.

[16] B. Nicolae. High throughput data-compression for cloud storage. In
A. Hameurlain, F. Morvan, and A. Tjoa, editors, Data Management
in Grid and Peer-to-Peer Systems, volume 6265 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-15108-81.

[17] A. Padyana, C. Sudheer, P. K. Baruah, and A. Srinivasan. High through-
put compression of floating point numbers on graphical processing units.
In Proceedings of the 2nd IEEE International Conference on Parallel
Distributed and Grid Computing (PDGC), pages 313–318. IEEE, 2012.

[18] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. Chang, S.-H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. F. Samatova. Isobar precondi-
tioner for effective and high-throughput lossless data compression. Data
Engineering, International Conference on, 0:138–149, 2012.

[19] E. R. Schendel, S. V. Pendse, J. Jenkins, D. A. Boyuka, II, Z. Gong,
S. Lakshminarasimhan, Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross,
and N. F. Samatova. Isobar hybrid compression-i/o interleaving for large-
scale parallel i/o optimization. In Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing,
HPDC ’12, pages 61–72, New York, NY, USA, 2012. ACM.

[20] Y. Su, Y. Wang, G. Agrawal, and R. Kettimuthu. Sdquery dsi: integrating
data management support with a wide area data transfer protocol. In
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21,
2013, page 47. ACM, 2013.

[21] P. L. Vidale, H. Weller, and B. N. Lawrence. Weather and Climate
Modelling: ready for exascale? http://www.exascale.org/bdec/sites/
www.exascale.org.bdec/files/whitepapers/BDEC%20workshop-PL
Vidale.pdf, 2013. [Online; accessed October-2013].

[22] Y. Wang, Y. Su, and G. Agrawal. Supporting a light-weight data
management layer over hdf5. In CCGRID, pages 335–342. IEEE
Computer Society, 2013.

